Dynamic Respirator Modulates Pore Size

2021-12-23 07:18:11 By : Ms. ERIN NIEH

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

The coronavirus pandemic has made many people get accustomed to wearing face masks to safeguard themselves and others. However, that does not mean it is always easy to wear them — particularly during exercise.

Currently, researchers reporting in the journal ACS Nano have come up with a dynamic respirator capable of adjusting its pore size in response to varying conditions, like exercise or air pollution levels. This enables the wearer to breathe in an easy way when there is no need for the highest levels of filtration.

Face masks help protect against the spread of the virus that is responsible for causing COVID-19, but they are also worn by people with respiratory issues to remove harmful pollutants.

However, at times, high levels of filtration are not required, like when the levels of air pollution are low, or when someone is exercising alone outdoors, which is usually considered a low-risk activity for spreading COVID-19. Yet, masks that are worn by people at present do not have the ability to adjust to varying conditions.

As time passes, the trapped and exhaled breath can create sensations of humidity, heat, bad breath and discomfort, particularly as more breath gets exhaled during exercise. Seung Hwan Ko and collaborators wished to develop a respirator that could have the ability to automatically adjust its filtration characteristics in reaction to changing conditions.

A dynamic air filter with micropores was designed by the scientists that could expand on stretching the filter. This enables more air to pass through. A sharp increase in the filter’s breathability was made of electrospun nanofibers and was achieved with only around a 6% loss in filtration efficiency. Furthermore, the team placed a stretcher near the filter that was linked to a lightweight and portable device containing an air pump, sensor and microcontroller chip.

The device communicates without cables, with an external computer running artificial intelligence (AI) software that responds to particulate matter in the air, as well as variations in the respiratory patterns of the wearer during exercise. Two of the filters were positioned on each side of a face mask and were tested on human volunteers.

A slight increase in pore size was properly produced by the stretcher when a volunteer exercised in a polluted atmosphere compared to when they exercised in clean air. Remarkably, the AI software enables the respirator to adapt to the special respiratory characteristics of the individuals.

The researchers feel that this could be utilized to develop a personalized face mask. To make the system lighter, smaller and less heavy, the stretcher could finally be redesigned to have a pump-free mechanism.

The authors of the study acknowledge financial support from the National Research Foundation of Korea.

Shin, J., et al. (2021) Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection. ACS Nano. doi.org/10.1021/acsnano.1c06204.

Source: https://pubs.acs.org/

Do you have a review, update or anything you would like to add to this news story?

AZoNano speaks with Professor Hyoungsoo Kim from KAIST about his efforts to create a novel nanoscale self-assembling salt-crystal origami method called crystal capillary origami.

We speak with Dr. Tao Zhang about a general method for the kinetically controlled synthesis of gold penta-twinned nanocrystals.

AZoNano speaks with Dr. Jinian Yang about his involvement in research investigating the benefits of flower-like nanoparticles on the properties of epoxy resin.

The Cluster series quadrupole analyzer is a precision-assembled triple mass filter with unique, independently driven RF-only secondary filter stages preceding and following the primary mass filter.

The P-17 stylus profiler surface measurement system provides excellent measurement repeatability for consistent measurement of 2D and 3D topography.

The Profilm3D family offers affordable optical surface profilers that produce high-quality surface profiles and infinite depth-of-field True Color images.

AZoNano.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2021